

Fluorescence Probes and Labels for Biomedical Applications

Ewald Terpetschnig

Classification:

Intrinsic Fluorophores

Extrinsic Fluorophores

Intrinsic Fluorophores

Naturally Occurring Fluorophores

Proteins: Naturally Occurring Fluorophores Aromatic amino acids

Fluorescence Lifetimes of Protein-Related Fluorophores

Tyrosine:

- λ_{Ex}: 280-nm LED
 - Em: 320-nm LP
- τ = 3.2 ns (Water)

NATA:

λ_{Ex}: 300-nm LED

Em: 320-nm LP

• τ = 3.09 ns (Water)

Naturally Occurring Fluorophores

Enzyme Cofactors

Porphyrins Ex/Em 550 nm/620 nm

Fe²⁺ (Heme) myoglobin, hemoglobin cytochromes b and c, cytochrome P450 and cytochrome oxidase

Mg²⁺ chlorophylls

NADH (Oxido-reductases) Ex/Em 340/460 nm

FAD (Metabolic enzymes) Ex/Em 450nm/540 nm

Extrinsic Fluorophores

Synthetic dyes or modified biochemicals that are added to a specimen to produce fluorescence with specific spectral properties.

Fluorescent Probes:

Non covalent interaction

A fluorescent probe is a fluorophore designed to localize within a specific region of a biological specimen or to respond to a specific analyte.

Fluorescent Labels:Covalent interaction

Classes of Probes, Dyes and Labels:

- Organic Dyes
- Metal-Ligand Complexes
- Quantum Dots and Nanoparticles
- Fluorescent Beads or Polymers
- Fluorescent Proteins

Fluorescent Probes

Non-covalent

1,8-ANS

Developed by G. Weber in 1950's

Barely fluorescent water - fluorescence is strongly enhanced in hydrophobic environments

Valuable probes for studying membranes and proteins: QY \sim 0.25 (membranes) or \sim 0.7 (proteins)

ISS

Fluorescent Probes

Albumin Blue

Measurement of albumin levels in biological samples including serum and urine.

Developed by Kessler & Wolfbeis

Specific- quantitative determination of Albumin in presence of other proteins

Albumin-specific also at concentrations below 100mg.L⁻¹ - Microalbuminuria

Fluorescent Ion-Probes

Fluorescent Ion-Probes

Fluorescence probes have been developed for a wide range of ions:

Cations: H+, Ca²⁺, Li+, Na+, K+, Mg²⁺, Zn²⁺, Pb²⁺ and others

Anions: Cl⁻, PO_4^{2-} , Citrate, ATP, and others

How to choose the correct fluorescent probe

Dissociation Constant (Kd)

- Must be compatible with the concentration (pH) range of interest.
- Calibration: Kd of probe is dependent on pH, temperature, viscosity, ionic strength etc.....

Measurement Mode

- Qualitative or quantitative measurements.
- Ion-probes showing spectral shifts radiometric measurements
- Light source available

Indicator Form

- Influences cell loading and distribution of the probe.
- Salts and dextran-conjugates microinjection, electroporation
- AM-esters passively loaded and cleaved by intracellular esterases

Probe	pH Range	Measurement Mode
SNARF indicators	6.0-8.0	Em. ratio 580/640 nm
HPTS (pyranine)	7.0-8.0	Exc. ratio 450/405 nm
BCECF	6.5-7.5	Exc. ratio 490/440 nm
Fluoresceins and Carboxyfluoresceins	6.0-7.2	Exc. ratio 490/450 nm
Oregon Green dyes	4.2-5.7	Exc. ratio 510/450 nm
LysoSensor Yellow/Blue DND-160	3.5-6.0	Em. ratio 450/510 nm

Molecular Probes' pH indicator families, in order of decreasing pK_a

BCECF

R. Tsien 1982

Most widely used fluorescent indicator for intercellular pH

Membrane-permeant AM: pKa ~ 6.98 is ideal for intracellular pH measurements

Excitation-ratiometric probe with Ip at 439 nm, which is used a the reference point

Calcium-Probes

BAPTA

Chelator with high selectivity for Ca^{2+} in presence of excess [mM] Mg^{2+}

K_d for Ca²⁺

No Mg²⁺: 160 nM 1 mM Mg²⁺: 700 nM

Calcium-Probes

<mark>U</mark>₩

FURA (Fura-2, Fura-4F, Fura-5F, Fura-6F, Fura-FF) **INDO** (Indo-1, Indo 5F)

Ratiometric

VISIBLE

FLUO (Fluo-3, Fluo-4, Fluo5F, Fluo-5N, Fluo-4N) **RHOD** (Rhod-2, Rhod-FF, Rhod-5N) Calcium Green, Calcium Orange, Calcium Crimson Oregon Green 488-BAPTA

Non-Ratiometric

FURA-2

Excitation-Ratiometric

Indicator	K _d (Ca ²⁺)		
Fura-2	0.14 μM		
Fura-5F	0.40 μM		
Fura-4F	0.77 μM		
Fura-6F	5.30 μM		
Fura-FF (5,6)	35 µM		

Most used in conventional microscopic imaging Good excitation shift with Ca²⁺ Ratioed between 340 and 350 and 380 to 385 nm Fura-4F, Fura-5F, Fura-6F and Fura-FF provide increased sensitivity to intracellular Ca²⁺ concentration in the 0.5–35 µM range

Ø ISS"

Indo-1

Emission-Ratiometric

Indicator	K _d (Ca²+) (μM)	
indo-1	0.23	
indo-5F	0.47	

Most used in laser flow cytometry Ratioed between 450 and 405 nm Photobleaches faster than Fura-2 Excitation with UV laser or Ti-Sapphire at 350 nm

Calcium Green-5N

Non-Ratiometric

Indicator	K _d (Ca ²⁺)
Calcium Green-5N	14 uM

Low affinity Ca-probe Low fluorescence in absence of Ca²⁺ Tracking rapid Ca²⁺-release kinetics

Fluorescent Labels

Labeling should not alter the biological activity of biomolecules

Protein Labeling

Amino-Modification:

Protein Labeling

Thiol-Modification:

ø iss:

Labeling Procedure

Determination of Dye-to-Protein Ratios

Bradford, Lowry assay

Organic Dye Classes

Xanthenes Fluoresceins - pH-sensitive, not photostable Rhodamines - tendency to aggregate in aqueous solution **Coumarins** - low extinction coefficients, phototoxic BOPIDYs - non-polar and relatively insoluble in water Phthalocyanines - photostable but difficult to synthesize and purify **Cyanines** - high extinction coefficients and reasonable quantum yields

Examples of Extrinsic Labels N=C=S ċн, H₃C ^{СН}з с COOH -so₃- 0 -so₂NH(CH₂)₅ -C-O-N FITC **Texas Red-NHS** BODIPY (488/512), $\tau \approx 4.0$ $(595-615), \tau \approx 3.5 \text{ ns}$ $(493/503), \tau = 6 \text{ ns}$ ноос соон инсн₂сн₂ин -с -сн₂ O CH_3 H₃C SO₃H **IAEDANS**

(360/480), $\tau \approx 15$ ns

Coumarin-3-carboxylic acid -NHS (445/482), $\tau \approx$ 2 -3 ns

LaJolla Blue (680/700)

Absorption of Biological Material

Spectral Properties and Quantum Yields of Representative Long-Wavelength Absorbing and Emitting Dyes

Dye	λ _{max} (abs) [nm]	λ _{max} (em) [nm]	ε (M⁻¹cm⁻¹)	Lifetime τ [ns]	Q.Y. (H ₂ O)
Cy5	649	670	250,000	1.0	0.3
Dy650	649	670	120,000	0.64	0.05
Alexa 647	647	666	265,000	1.0	0.33
DyLight 649	646	674	250,000	1.0	0.33
HiLyte 647	649	674	250,000	1.0	0.28
BODIPY	629	646	97,000	3.9	0.7
Atto	661	678	100,000	1.8	0.3

HPLC-Retention Times of Red Fluorescent Dyes

Structure and Spectral Properties of Long-Wavelength Cy DyesTM

Structure and Spectral Properties of Long-Wavelength ALEXA DyesTM

Dye-	λ _{max} (abs)	λ _{max (em)}	ε	Q.Y.
Conjugate	[nm]	[nm]	(M⁻¹cm⁻¹)	
AF647	650	668	250,000	0.33
AF660	668	668	132,000	0.37
AF750	749	782	240,000	0.12

Quantum Yields and Total Fluorescence of IgG-Conjugates of Cy5 (\,\), and Alexa-647(_) for Various D/P Ratios

Cy5 has anomalous tendency to aggregate

Cy5 - Anomalous Tendency to Aggregate

1st Cy5 molecule associates with the surface of a protein and reacts

2nd molecule interacts with labeled Cy5 and then reacts with next closest amino-group

Gruber et al., Bioconjugate Chem. 2000, 11, 696-704

Time-Resolved Luminescence Measurement

Luminescent Lanthanides (Eu³⁺, Tb³⁺) Advantages vs. Organic Fluorophores:

Enable Discrimination of Short-Lived Autofluorescence by "Gating" - More Sensitive and Reliable Measurements

Narrow Emission Bands Long Luminescent Lifetimes Large Stokes' Shifts

Homogeneous Time-Resolved Fluorescence Immunoassays (HTRF)

Minimal Sample Preparation - No Wash Steps Applications: Drug Discovery Clinical Diagnostics

Ø ISS'

What Is The Mechanism?

Antenna Effect

"Antenna Effect": Strong Absorption and Good Energy Transfer Ln(III) Protected from Quenching Thermodynamically Stable and Kinetically Inert Complexes

Lanthanide Complexes for Homogeneous Time-Resolved Immunoassays

LANCE UltraTM

Eu³⁺ - Luminescence

- $\phi = 11 15$ %, $\lambda_{excitation} \sim 320$ nm
- CH- and CH₂-Group are Replaced by CD and CD₂
- Acceptors : Allophycocyanine (APC) or cyanine dyes

Lanthanide Complexes for Homogeneous Time-Resolved Immunoassays

Eu-CryptateTM

Luminescent Only in Presence of F-

 $\phi = 2\%$

Not Stable in Water but "Kinetically Inert"

1-3 Water Molecules are Coordinated to Ln(III) (Limited Protection)

Acceptor : XL665 or C2 a low-MW acceptor

Highly Luminescent Lanthanide Complexes

Ligand Tb³⁺

Lumiphore, Inc. Quantum Yield: 60 % !!! Lifetime $\tau = 2.56$ ms

TR-FRET HTS Assay

Spectral Data and Lifetimes for a Representative Metal-Ligand Complexes (MLCs)

Ru(bpy)₂(dcbpy)

 $\lambda_{max}(abs) (water) = 467 \text{ nm} \qquad \lambda_{max}(abs) \lambda_{max}(abs) = 655 \text{ nm} \qquad \lambda_{max}(abs) \lambda_{max}(abs) \lambda_{max}(abs) = 655 \text{ nm} \qquad \lambda_{max}(abs) \lambda_{max}(abs) = 655 \text{ nm} \qquad \lambda_{max}(abs) \lambda_{max}(abs) \lambda_{max}(abs) = 655 \text{ nm} \qquad \lambda_{max}(abs) \lambda_{max}($

Ru(SO₃dphphen)₂(dcbpy)

$$\begin{split} \lambda_{max}(abs) \;(water) &= 4640 \; nm \\ \lambda_{max}(em) &= 643 \; nm \\ Q.Y. &= 0.06 \\ \tau &= 0.8 \; \mu s \\ \tau &= 2 \; \mu s \; (HSA) \end{split}$$

Re(CO)₃Cl(phen)

 $\lambda_{max}(abs) (water) = 275 \text{ nm}$ $\lambda_{max}(em) = 589 \text{ nm}$ Q.Y. = 0.2 $r_0 = 0.3$ $\tau = 110 \text{ ns}$

Excitation Polarization Spectra of Representative MLCs

Fluorescence Polarization: A Race between Emission and Molecular Motion

Excited molecules remain aligned. Fluorescence is polarized.

Orientation of excited molecules randomizes. Fluorescence is depolarized.

Fluorescence Polarization Measurement

®

Fluorescence Polarization

Polarization (P) = $I_v - I_h / I_v + I_h$ Anisotropy (r) = $I_v - I_h / I_v + 2 I_h$ P = 3r/2 + rr = 2P/3-P

Role of Lifetime in FP

®

$$r = \frac{r_0}{(1 + \tau/\theta)}$$

 $\tau_{fl} \sim 300 \text{ ns}$

 $\theta = 150 \text{ ns}$

 $\tau_{\rm fl} = 4$ ns

Quantum Dots

Quantum Dots

Nanometer-Scale Atom Clusters

CORE

Cadmium selenide (**CdSe**), or Cadmium telluride (**CdTe**) few hundred – few thousand atoms

The semiconductor material is chosen based upon the emission wavelength, however it is the **size** of the particles that **tunes the emission wavelength**.

SHELL

In the core emission is typically weak and always unstable.

The shell material (**ZnS**) has been selected to be almost entirely unreactive and completely insulating for the core.

COATING

A layer of organic ligands covalently attached to the surface of the shell. This coating provides a **surface for conjugation** to biological (antibodies, streptavidin, lectins, nucleic acids) and nonbiological species and makes them "water-soluble"

 Molecule
 Semiconducting Infinite Solid

 Antibonding orbital (mostly
 Conduction Band

Bandgap of nanocrystal is size-dependent, larger than for bulk material

Preventing Photobleaching In Quantum Dots

Core/Shell

Plain core QDots show emission, but oxidation results in permanent loss of emission, so the population would gradually bleach away.

In Core/shell QDots the electron remains in the lowerenergy core orbitals, and never reaches particle surface to react

The shell keeps the high-energy excited electron away from oxygen

Semiconductor Nanocrystal Fluorescence

Size-dependent bandgap means size-dependent color

Courtesy of Invitrogen

Quantum Dots

Nanometer-Scale Atom Clusters

Quantum Dot Material System	Emission Range	Quantum Dot Diameter Range	Quantum Dot Type	Standard Solvents	Example Applications
CdSe	465nm - 640nm	1.9nm - 6.7nm	Core	Toluene	Research, Solar Cells, LEDs
CdSe/ZnS	490nm - 620nm	2.9nm - 6.1nm	Core-Shell	Toluene	VisibleFluorescence Applications, Electroluminescence, LEDs
CdTe/CdS	620nm - 680nm	3.7nm - 4.8nm	Core-Shell	Toluene	Deep Red Fluorescence Apps.

Qdot Optical Spectra

Brightness Means Sensitivity

Qdot[®] nanocrystals

SS

Cy5 organic dye

Anti-Her2/neu + anti-mouse lg conjugates

- SK-BR-3 Cells: High Her2/neu expression
- Nanocrystals up to 50x brighter

0.44 s exposure

8.12 s exposure

- MDA-MB-231 cells: Low Her2/neu expression
- Nanocrystals easy to detect but dye undetectable

Courtesy of Invitrogen

Photostability in Microscopy

3T3 Cells

Top panel (a-e) Nucleus: Qdot[®] 605 conjugate Microtubules: Alexa Fluor[®] 488 conjugate

Bottom panel (f-j) Nucleus: Alexa Fluor® 488 conjugate Microtubules: Qdot® 605 conjugate

Photostability results in sensitivity, ease of use, and sample permanence

Courtesy of Invitrogen

Qdot Summary

Advantages:

Broad absorption spectra, making it possible to excite all colors of QDs simultaneously with a single light source - **Multiplexing**

Narrow and symmetrical emission spectra

Emission tunable with size and material composition

Exhibit excellent photo-stability

Disadvantages:

Large size and high mass limit their use in applications requiring high diffusional mobility

QDot	λ _{max (abs)} [nm]	λ _{max (em)} [nm]	ε (M⁻¹cm⁻¹)	Q.Y.
655	350	655	9,000,000	~0.5
705	350	705	13,000,000	~0.5
800	350	800	13,000,000	~0.5

Thank You