advanced fluorescence techniques

september 22-26, 2009 | rio de janeiro, brazil

  1. Basic Definitions and Principles of Fluorescence
    • Basic Spectral Properties
    • Jablonski Diagram and Stokes' shift
    • Excitation and Emission Spectra
    • Polarization/Anisotropy
    • Fluorescence Lifetime
    • FRET: FÓ§rster Resonance Energy Transfer
  2. Instrumentation
    • Steady-State Fluorometer
    • Instrumentation for Time-Resolved Fluorescence
    • Light Sources for Time-Resolved Fluorometry (lamps, lasers, laser diodes, LEDs, synchrotron radiation)
    • Detectors (PMT, APD, MCP)
  3. Time-dependent Phenomena (Part I)
    • Multi-Exponential Decays
    • Time-Domain Lifetime Measurements
    • Frequency-Domain Lifetime Measurements
    • Quenching, Static, Dynamic, Transients
  4. Time-dependent Phenomena (Part II)
    • Anisotropy Decays
    • Energy Transfer-Distance Distributions
    • Time-Dependent Spectral Relaxation
    • Excited State Reactions
  5. Data Manipulation and Data Analysis
    • Spectral Manipulation
    • Least-square Analysis
    • Global Analysis
  6. Analytical Applications of Fluorescence
    • Advantages of Fluorescence in Chemical Analysis
    • Examples of Fluorescence Assays
    • Error Sources in Fluorescence Assays
    • Methods of Fluorescence Sensing
    • Lifetime-Based Sensing
    • Lifetime Sensing and Ratiometric Probes
  7. Confocal Fluorescence Microscopy
    • Instrumentation
    • Light Sources: One-photon and Multi-photon Excitation
    • Applications in Cells
    • Lifetime Imaging
  8. Fluorescence Correlation Spectroscopy (FCS)
    • FCS in Solutions
    • FCS in Cells
    • Single-Molecule Fluorescence
  9. Practical Use of Instrumentation